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ABSTRACT

Quantitative precipitation estimation (QPE) products from the next-generation National Mosaic and QPE

system (Q2) are cross-compared to the operational, radar-only product of the National Weather Service

(Stage II) using the gauge-adjusted and manual quality-controlled product (Stage IV) as a reference. The

evaluation takes place over the entire conterminousUnited States (CONUS) fromDecember 2009 toNovember

2010. The annual comparison of daily Stage II precipitation to the radar-only Q2Rad product indicates that

both have small systematic biases (absolute values . 8%), but the random errors with Stage II are much

greater, as noted with a root-mean-squared difference of 4.5mmday21 compared to 1.1mmday21 with Q2Rad

and a lower correlation coefficient (0.20 compared to 0.73). The Q2 logic of identifying precipitation types as

being convective, stratiform, or tropical at each grid point and applying differential Z–R equations has been

successful in removing regional biases (i.e., overestimated rainfall from Stage II east of the Appalachians) and

greatly diminishes seasonal bias patterns that were found with Stage II. Biases and radar artifacts along the

coastal mountain and intermountain chains were not mitigated with rain gauge adjustment and thus require

new approaches by the community. The evaluation identifies a wet bias by Q2Rad in the central plains and the

South and then introduces intermediate products to explain it. Finally, this study provides estimates of un-

certainty using the radar quality index product for both Q2Rad and the gauge-corrected Q2RadGC daily

precipitation products. This error quantification should be useful to the satellite QPE community who use Q2

products as a reference.

1. Introduction

Reliable quantitative information on the spatial and

temporal distribution of rainfall is essential for a wide

range of applications including real-time flood forecasting,

evaluation of atmospheric model forecasts, evaluation of

precipitation estimates from remote sensing platforms,

dam operations and hydroelectric power generation,

transportation, and agriculture. Therefore, accurate mea-

surement and uncertainty estimation of precipitation at a

range of spatial and temporal resolutions is paramount for

a variety of scientific applications. Rainfall measurement

has been a challenge to the research community predom-

inantly because of its high variability in space and time,

thus limiting the representativeness of in situ measure-

ments from rain gauges anddisdrometers (Zawadzki 1975).

Ground- and space-based remote sensing instruments
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provide an opportunity to capture rainfall variability at

high resolution, but they have their own set of instrument-

specific errors.

While rain gauges collect rainfall directly in a small or-

ifice and measure the water depth, weight, or volume, re-

mote sensing instruments must rely on a more indirect

signal. Radar, for instance, transmits and receives a polar-

ized pulse of electromagnetic radiation in order to deduce

a great deal of information about the scatterers within

the sampling volume. Weather radar has proven its value

in the United States leading up to the installation of the

Weather Surveillance Radar-1988 Doppler (WSR-88D)

network [Next Generation Weather Radar (NEXRAD)],

which is the basis for quantitative precipitation esti-

mation (QPE) products evaluated in this study. These

radar-based QPEs require evaluation because of their

susceptibility to error. RadarQPEerrors can be generally

grouped into two categories: 1) obtaining a sample rep-

resentative of precipitation at the surface and 2) con-

version of the measured radar signal to rainfall rate. For

a detailed summary of radar rainfall errors, the reader is

referred to Krajewski et al. (2010).

A project built upon data collected by the NEXRAD

network is the National Oceanic and Atmospheric

Administration’s (NOAA) next-generation National

Mosaic and QPE system (Q2; http://nmq.ou.edu), de-

scribed in Zhang et al. (2011). The Q2 system combines

information from all ground-based radars comprising

the National Weather Service’s (NWS) NEXRAD net-

work, mosaics reflectivity data onto a common 3D grid,

estimates surface rainfall accumulations and types, and

blends the estimates with collocated rain gauge networks

to arrive at accurate, ground-based estimates of rainfall.

The uniqueness of the Q2 system lies in its resolution at

1-km2 horizontal resolution and high frequency of prod-

uct generation at 5min. A significant amount of research

has been conducted over the past 10 years to improve the

data quality and accuracy of the Q2 rainfall products

(Lakshmanan et al. 2007; Vasiloff et al. 2007; Zhang et al.

2005). To date, the most comprehensive study on the

evaluation of Q2 rainfall products was completed by

Wu et al. (2012). The evaluation was completed for

a year’s worth of data, primarily using gauges from the

NWS Automated Surface Observing System (ASOS)

as ground truth, and they supplemented their analysis

using gridded QPEs from the NWS Stage IV rainfall

product. They concluded that Q2 generally had lower

bias and better correlations with reference rainfall com-

pared to QPEs from the NWS Precipitation Processing

System (PPS; also referred to as Stage II) described in

Fulton et al. (1998). The errors, however, were shown to

be relatively high during the cool seasonmonths, at higher

rainfall rate thresholds, and within NWS River Forecast

Center (RFC) areas of responsibility located in the

Intermountain West.

The principal aim of this study is to complement the

recent work of Wu et al. (2012) by accomplishing the

following goals: 1) describe the spatial and temporal er-

ror characteristics of Q2 relative to Stage II and Stage IV

QPEs at the highest possible resolution, 2) elucidate

the underlying causes of the errors in order to provide

valuable feedback to the algorithm developers, and 3)

provide an error modeling framework to quantify the

uncertainty with Q2 products. We believe this multi-

tiered strategy will be useful for algorithm developers

and users of the data alike. Recently, the satellite QPE

community has been using Q2 datasets for algorithm

validation (Amitai et al. 2009, 2012; Kirstetter et al.

2012); it is thus imperative to identify and quantify the

error characteristics of Q2. The next section describes

the datasets used in the study and the comparative sta-

tistics. Section 3 presents results from the CONUS-wide

evaluation for the entire year and then broken down

seasonally. RFC-specific statistics are provided in this

section as well as in-depth explanations on the error

sources. Section 3 also quantifies the uncertainty withQ2

products using a radar quality index (RQI) as the pri-

mary describing factor. A summary of results and con-

cluding remarks close the paper in section 4.

2. Data and evaluation methods

a. Stage II radar-only and Stage IV products

Operational NWS precipitation products from the

National Centers for Environmental Prediction (NCEP)

Environmental Modeling Center (EMC) were obtained

from 1 December 2009 to 30 November 2010 over the

CONUS at hourly resolution on the 4-km Hydrologic

Rainfall Analysis Project (HRAP) grid. The fully au-

tomated, radar-only component of the PPS is based on

NEXRAD data and is referred to hereafter as ‘‘Stage II

radar only’’. Additional details of the product archive are

described at the following website, where the data were

obtained: http://data.eol.ucar.edu/codiac/dss/id521.090.

The Stage II radar-only product uses reflectivity on the

hybrid scan, which is composed of the lowest elevation

angles that clear the underlying terrain. Quality control

procedures are applied to the hybrid scan reflectivity in

order to remove isolated targets presumed to be ground

clutter from buildings and trees and to remove anomalous

propagation (AP) by evaluating the percent reduction

in reflectivity in tilts above the hybrid scan. Reflectivity

(Z) data are converted to rainfall rates (R) using a sin-

gle Z–R relationship applied to all bins underneath the

radar umbrella. Rainfall estimates from adjacentWeather
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Surveillance Radar-1988 Doppler (WSR-88D) radars are

then composited together at NCEP to arrive at a CONUS

product. All procedures in generating Stage II radar only

are automatic and are considered as inputs to the Stage IV

precipitation analysis generated at individual RFCs.

A major responsibility of each RFC is producing a

high-quality precipitation analysis on an hourly or at

least 6-hourly basis. The Stage IV product is composed

of data fromWSR-88Ds, rain gauges, and satellite data,

with the capability of manual quality control performed

by forecasters. The technique of bias correction called

P1was originally developedby forecasters at theArkansas–

Red Basin RFC. A bias field is computed by comparing

the Stage II radar estimates of rainfall to gauge reports on

an hourly basis. These biases are then spatially analyzed

using an inverse distance weighted (IDW) interpolation

scheme. The bias field is then applied back to the original

radar field so as to preserve the spatial variability of

rainfall captured by radar but correct its bias using rain

gauge reports. The forecaster then has the capability to

perform quality control on the gauge-corrected rainfall

field by direct interaction, and they can utilize satellite-

based rainfall estimates in regions of poor radar coverage

from the Hydro-Estimator algorithm developed at the

National Environmental Satellite, Data, and Information

Service (Scofield andKuligowski 2003; Vicente et al. 1998).

The multisensor inputs to the Stage IV product combined

with the manual interaction performed by trained NWS

forecasters results in a very high quality product at 4-km–

1-h resolution. Finally, Stage IV products from the 12

individual RFCs are mosaicked over the CONUS, dis-

played, and archived at NCEP (http://www.emc.ncep.

noaa.gov/mmb/ylin/pcpanl/stage4/).

The original intent of the studywas to use the Stage IV

CONUS mosaics as the reference, or ground truth, to

evaluate the other products at hourly resolution. Upon

examining the CONUS mosaics, however, it was dis-

covered that not all RFCs use the same protocols in

terms of generating Stage IV precipitation products at

hourly resolution, particularly in the Pacific Northwest.

For this reason, the Stage IV 24-h precipitation product

is used as a reference hereafter. In addition, the western

offices, that is, California–Nevada RFC, Northwest RFC,

and Colorado Basin RFC, use a different scheme to es-

timate hourly (or daily) precipitation amounts than the

RFCs in the rest of the country. Because the reference

rainfall product in the western RFCs is generated quite

differently from the radar-based products being evalu-

ated, larger differences and lower correlations are ex-

pected there.

In the western RFCs, gauge-recorded precipitation is

spatially interpolated to the terrain using the Parameter-

Elevation Regressions on Independent Slopes Model

(PRISM) developed by Daly et al. (1994). Recorded

precipitation is essentially used to scale the monthly pre-

cipitation climatologies, which reflect orographic precip-

itation patterns over steep terrain. Thus, the Stage IV

precipitation product in the West does not use weather

radar to depict spatial precipitation patterns, but rather

relies on themonthly climatological patterns. Nonetheless,

Stage IV precipitation at daily scale and 4-km spatial res-

olution is considered the ‘‘gold standard’’ inQPE; thus, we

rely on it as the reference product hereafter.

b. NOAA/NSSLNational Mosaic and QPE products

The Q2 system was originally developed from a joint

initiative between the NOAA/National Severe Storms

Laboratory (NSSL), the Salt River Project (SRP), and

the Federal AviationAdministration’s AviationWeather

Research Program. The system assimilates different ob-

servational networks, including ‘‘raw’’ level-2 data from

the NEXRAD network, model hourly analyses from the

Rapid Update Cycle (RUC) model (Benjamin et al.

2004) and rain gauge observations from the Hydrome-

teorological Automated Data System (HADS). Similar

to the Stage II radar-only product, computations are first

computed in polar coordinates on grids centered on each

WSR-88D site. Hybrid scan reflectivity is computed in the

same manner as in Stage II radar only, but the quality

control procedures are based on a neural network ap-

proach that examines the 3D spatial characteristics of re-

flectivity (Lakshmanan et al. 2007). The quality-controlled

reflectivity data from each WSR-88D site are mosaicked

on a Cartesian 3D grid covering the CONUS using the

objective analysis scheme described in Zhang et al.

(2005). The next step in QPE generation involves a clas-

sification step. Each vertical column of reflectivity is ex-

amined to determine if the precipitating echoes are either

convective, stratiform, or are being generated through

warm rain processes. Moreover, the RUC freezing level

height analysis is combined with radar observations to

determine locations of inflated reflectivity in the bright

band (Zhang et al. 2008). The Z observations are cor-

rected to represent near-surface conditions, and the

classification type dictates whichZ–R equation is applied

(i.e., convective, stratiform, or tropical). This logic is ap-

plied to each 1-km grid cell independently on a 5-min

basis to yield the Q2 radar-only product, referred to as

Q2Rad hereafter.

The second Q2 product to be evaluated in this study

is the gauge-corrected Q2Rad product, or Q2RadGC.

Similar to the Stage IV bias correction method, hourly

rain gauge reports are collected and collocated with over-

lying Q2Rad estimates of rainfall. A bias is computed

at each rain gauge location and spatially analyzed using

an IDW scheme. In the case of Q2, the two adaptable
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parameters, the cutoff radius and the exponent control-

ling the weighting function, are optimized on an hourly

basis using a leave-one-out, cross-validation scheme. The

interpolated bias field is applied back to the gridded

Q2Rad estimates to yield the bias-corrected Q2RadGC

field. Because the nominal temporal resolution of gauge

reports is hourly, the Q2RadGC product’s resolution is

1 km–1h (Table 1), althoughKirstetter et al. (2012) applied

the hourly bias values downscale to yield the Q2RadGC

product at 5-min resolution.

c. Cross-evaluation periods and methods

Given their best joint data availability, we chose one

full year from 1 December 2009 through 30 November

2010 to intercompare the four radar-based QPE prod-

ucts in this study. Note that four months of this time

period coincide with that of Wu et al. (2012), who ex-

amined algorithm performance during the warm season

of 2009 (April–September) and cool season (October

2009 to March 2010). Figure 1 shows the percentage of

data available from each of the four products for the 1-yr

study period. Both Q2Rad and Q2RadGC have the

highest data availability (100%) during this period while

Stage IVhas comparable availability.However, the Stage

II radar-only products show data outages as high as 20%,

which seem to be radar specific and concentrated in the

Intermountain West. The reader should not confuse

Fig. 1 with effective radar coverages in complex terrain,

as in Maddox et al. (2002). Rather, the lack of data avail-

ability can be interpreted as a loss in transmitted data due

to radar outages. In any case, we only conducted the in-

tercomparisons for grid cells containing data availability of

80% or greater, which still covers 99% of the CONUS.

For quantitative evaluation indices, we use the fol-

lowing statistics to compare the Q2Rad, Q2RadGC, and

Stage II radar-only products (R) against the Stage IV

daily precipitation accumulations: difference (Diff) in

millimeters per day, relative difference (RD) in percent

(also referred to as bias), root-mean-squared difference

(RMSD) in millimeters per day, Pearson linear corre-

lation coefficient (CC), and normalized standard error

(NSE), where

TABLE 1. Details of the four national QPE products studied.

Radar

Gauge

input

Satellite

input

Model

input

Human

input Climatology Resolution

; Data

period Source

Stage II Yes No No No No No 4 km, 1 h 1994 NCEP

Stage IV Yes Yes Yes No Yes Yes 4 km, 1 h 2001 NCEP

Q2Rad Yes No No Yes No No 1 km, 5min 2006 NSSL

Q2RadGC Yes Yes No Yes No No 1 km, 1 h 2006 NSSL

FIG. 1. Data availability (%) fromDecember 2009 to November 2010 for (a) Stage II, (b) Q2Rad, (c) Q2RadGC, and

(d) Stage IV.
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In (4), cov refers to the covariance, and s is the standard

deviation. The total number of comparisons N varies

according to the spatiotemporal domain over which the

statistic is computed (i.e., annual, seasonal, orRFCwide).

NSE in (5) normalizes the mean standard error (with

mean denoted by overbar) for a given comparison cate-

gory so that the values scale from 0 to 1, with 1 being the

worst performance. As with many statistical measures,

there is not a single one that adequately describes the

overall error, so it is recommended to examine all of them

jointly.

3. Results

a. Daily precipitation evaluation

Figures 2a–d show daily mean precipitation from

1December 2009 to 30 November 2010 estimated by the

four QPE algorithms investigated in this study. Each

algorithm depicts similar precipitation patterns over the

CONUS, but there are notable differences. First, the

Q2Rad product appears to have too much precipitation

in the central plains and the South compared to the other

products. The three fully automated algorithms (i.e.,

Stage II, Q2Rad, andQ2RadGC) are similar in their lack

of precipitation, compared to Stage IV, along the coastal

mountain chains in the West and their radar-centric,

circular patterns of precipitation in the Intermountain

West and north-central plains. Q2RadGC does slightly

better than the other two with precipitation on the West

Coast. The same three algorithms depict an unlikely pre-

cipitation minimum in eastern West Virginia, which was

likely a result of beam blockage and was subsequently

corrected in the Stage IV product.

Density-colored scatterplots and statistics are shown

in Figs. 2e–g using the Stage IV product as a reference.

The CC with Stage II is the lowest at 0.20 because of

several isolated points that were overestimated because

of ineffective ground clutter removal. These problem-

atic points are largely responsible for Stage II having the

highest RMSD at 4.5mmday21. Overall, Stage II is as-

sociated with little bias though with an RD of 26.8%.

Stage II is compared to the other automated, radar-only

product, Q2Rad. Q2Rad benefits greatly from improved

data quality procedures. There is overestimation by

7.9% that appears most predominantly in the regions of

the central and southern United States that receive the

most warm-season rainfall. The gauge-correction scheme

to Q2Rad in the Q2RadGC product reduces this bias

down to 24.1% and is also successful in dropping the

RMSD from 1.1 to 0.8mmday21 and increasing the CC

from 0.73 to 0.81. The remaining differences between

Q2RadGC and Stage IV are in the Intermountain West

and West Coast, where Stage IV relies on precipitation

gauges and the mountain mapper technique to represent

climatological precipitation patterns over complex terrain.

Table 2 provides overall statistical performance as

quantified byDiff, CC, andNSE over the CONUS and is

then broken down by regions and RFCs. The Diff sta-

tistic indicates that while the Q2Rad product performs

well when considering all grid points over the CONUS,

it underestimates more severely in the western RFCs

than the other algorithms (20.64mmday21) and over-

estimatesmore than the others in the central and eastern

RFCs (0.33 and 0.61mmday21). The Stage II product,

on the other hand, suffers similar underestimation prob-

lems as Q2Rad in the western RFCs (20.61mmday21)

but is less biased than Q2Rad in the central and eastern

RFCs (0.21 and 0.13mmday21). The overestimation of

Q2Rad in the central and eastern RFCs is a topic we

address more completely in later sections. The gauge-

correction scheme in Q2RadGC removes the bias in

Q2Rad in the central and eastern RFCs almost com-

pletely, but the western RFCs are still plagued by under-

estimation (20.49mmday21). Recall that Stage IV uses

the gauge-based mountain mapper approach in theWest,

so it is not surprising to see large discrepancies (i.e., lower

CC values) with the other products that use radar data.

These algorithmic differences impact the CC in the west-

ernRFCs, with all three algorithms apparently performing

the worst there. The CCs for Q2Rad and Q2RadGC are

better than Stage II in the central and western regions.
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Next, we produced spatial maps ofDiff, CC, andRMSD

at each 4-km grid point using daily rainfall accumulations

over the 1-yr study period. Again, Stage IV is assumed

to be the reference. The bias patterns are quite similar

among the radar-based products in theWest, where there

is moderate underestimation in the intermountain re-

gions and much more significant underestimation along

the coastal mountain chains, like the Sierra Nevada and

Cascade Range (Fig. 3a–c), and the interior chains, like

the northernRockyMountains and the BitterrootRange.

These deficiencies are a result of 1) poor low-level cover-

age in these complex terrain regions and/or 2) an inappro-

priate Z–R equation applied for orographic precipitation

(Rosenfeld and Ulbrich 2003). It is also worth noting

that all three algorithms yield too much rainfall in the

valleys near Seattle and Portland. The reason for the

overestimation in the northern valleys is likely because of

bright band contamination from radar sampling of par-

tially wetted hydrometeors in the melting layer. Radar

range–dependent biases are prevalent in the intermountain

regions, and the gauge correction inQ2RadGCdoes little

to remove this bias pattern. In the eastern United States,

the Appalachian Mountains stand out with underesti-

mated precipitation, but not as severely as in theWest. In

terms of algorithmic differences, Stage II yields several

‘‘hot spots’’ with overestimation. Some of these occur

because of the presence of nearby mountains, such as the

Mogollon Rim in Arizona, the Ozarks in Arkansas, and

the Wichita Mountains in Oklahoma. The apparent data

quality control problems also appear in parts of Texas,

FIG. 2. Average daily precipitation (mmday21) over the CONUS for (a) Stage II, (b) Q2Rad, (c) Q2RadGC, and (d) Stage IV.

(e)–(g) Scatterplots for (a)–(c) using the Stage IV products as reference.
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where there is not significant terrain relief. Q2Rad over-

estimates precipitation in the central and southernUnited

States, which tends to be most prominent where there are

precipitation maxima. This bias is nominally removed

using gauge adjustment in the Q2RadGC product, with

the exception of mountainous regions.

The spatial pattern of CCmakes it quite obvious where

the radar-based algorithms suffer from lack of low-level

coverage in the West. Figure 3d–f corresponds quite well

to the effective radar coverage maps of Maddox et al.

(2002). The incorporation of rain gauges in the estima-

tion scheme improves the CC but indicates that much

TABLE 2. Average daily precipitation (mmday21), averageDiff (mmday21), CC, andNSE for each algorithm over the CONUS; the west,

central, and east RFC region,; and the 12 RFCs.

Index Type CONUS West Central East

West Central East

NW CN CB MB AB WG NC OH LM NE MA SE

Mean Stage IV 2.17 1.48 1.83 2.95 2.19 1.35 0.86 1.89 1.99 1.6 2.36 2.89 3.17 3.23 3.15 3.55

rainfall Stage II 2.02 0.87 2.04 2.82 1.14 0.8 0.67 2.03 2.39 1.81 2.53 2.52 3.36 2.56 2.17 3.41

Q2Rad 2.34 0.84 2.16 3.56 1.14 0.74 0.63 2.05 2.60 2.07 3.09 3.51 4.08 3.27 3.21 4.15

Q2RadGC 2.08 0.99 1.82 3.08 1.30 0.99 0.68 1.70 2.12 1.86 2.49 2.88 3.45 3.17 2.95 3.84

Diff Stage II 20.15 20.61 0.21 20.13 21.05 20.55 20.19 0.14 0.4 0.21 0.17 20.37 0.19 20.67 20.98 20.14

Q2Rad 0.17 20.64 0.33 0.61 21.05 20.61 20.23 0.16 0.61 0.47 0.73 0.62 0.91 0.04 0.06 0.60

Q2RadGC 20.09 20.49 20.01 0.13 20.89 20.36 20.18 20.19 0.13 0.26 0.13 20.01 0.28 20.06 20.2 0.29

CC Stage II 0.78 0.55 0.83 0.90 0.52 0.64 0.50 0.82 0.86 0.82 0.91 0.91 0.88 0.91 0.87 0.88

Q2Rad 0.81 0.55 0.89 0.94 0.56 0.62 0.49 0.86 0.91 0.92 0.94 0.94 0.95 0.91 0.92 0.93

Q2RadGC 0.86 0.69 0.90 0.94 0.72 0.72 0.62 0.88 0.92 0.92 0.94 0.94 0.95 0.94 0.94 0.95

NSE Stage II 0.62 0.71 0.56 0.61 1.00 0.53 0.56 0.56 0.6 0.52 0.46 0.52 0.71 0.57 0.72 0.80

Q2Rad 0.51 0.67 0.41 0.47 0.90 0.56 0.54 0.43 0.46 0.34 0.37 0.4 0.48 0.55 0.57 0.60

Q2RadGC 0.45 0.51 0.40 0.43 0.66 0.42 0.44 0.43 0.44 0.32 0.38 0.41 0.45 0.45 0.48 0.51

FIG. 3. (a)–(c) Average daily precipitation difference (mmday21), (d)–(f) CC, and (g)–(i) and RMSD (mmday21) for (left to right) the

Stage II, Q2Rad, and Q2RadGC products, where the Stage IV product was considered as the reference.
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research is needed for automated QPE in these inter-

mountain regions. The distribution of RMSD reiter-

ates the aforementioned algorithmic deficiencies in the

coastal and intermountain ranges of theWest (Fig. 3g–i).

The Stage IIRMSD reveals an interesting demarcation of

larger errors to the south and east of the Appalachians.

There is a suggestion of this pattern in the Q2Rad prod-

uct, but it is not as obvious. This feature exists in regions

of the southeast where there are large annual rainfall

amounts; thus, one might expect higher RMSD values

there. However, the high RMSD feature also exists in

drier areas like SouthCarolina and eastern parts of Florida

(see Fig. 2d). The air mass in this region generally has

higher moisture content, and we hypothesize that this

impacts the drop size distribution and thus the accuracy

of the reflectivity-to-rainfall (Z–R) equation being used.

Q2Rad differs from Stage II in this regard, as it applies

a differential Z–R relationship on a pixel-by-pixel basis,

whereas Stage II uses the same equation for all grid points

within a given radar umbrella.

b. Seasonal analysis

Seasonal precipitation patterns are shown in Fig. 4 for

all four algorithms. The range-dependent biases plaguing

the Stage II, Q2Rad, and Q2RadGC algorithms in the

Intermountain West appear most prominently in winter

and springwhenprecipitation typically falls from shallow,

stratiform systems. The radar-centric patterns are much

less obvious in fall and are practically gone in summer.

The hotspots noted in the Stage II product appear more

numerous in spring and fall months. These are times of

the year when midlatitude synoptic storms traverse the

CONUS and are associated with the most frequent

frontal passages. We hypothesize that low-level temper-

ature and humidity profiles produce beam-ducting con-

ditions during these transitional times of the year and

cause AP that is not properly removed from Stage II

precipitation products.

Density-colored scatterplots and associated statistics

quantify the seasonal errors in Fig. 5. All three algo-

rithms yield the most amount of spread or dispersion

about the 1:1 line in winter, while the smallest random

errors for each algorithm appear to be in summer. The

relatively high RMSDs and low CCs with the Stage II

product during the spring and fall months confirm the

prior assertion that very large accumulations at isolated

points, presumably from AP, are the culprit and require

further attention to improve the product’s data quality.

FIG. 4. Average daily precipitation (mmday21) for each season for (a)–(d) Stage II, (e)–(h) Q2Rad, (i)–(l) Q2RadGC,

and (m)–(p) Stage IV.
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It is also noteworthy that the Stage II product under-

estimates during the spring and fall with an RD of

approximately 210%, which worsens in the winter to

232.9% and then overestimates in the summer by

16.5%. The Q2Rad product yields less bias and smaller

random errors (i.e., lower RMSD and higher CC) com-

pared to the Stage II product; the remaining errors also

have much less seasonal dependence. The only excep-

tion to this generalization is the RD of 21.9% that occurs

during the summer. Figure 5g shows that this over-

estimation occurs with daily average rainfall amounts

greater than 8mmday21. Because the bias is a summer-

time phenomenon, it is less likely to be associated with

a radar sampling issue, but rather to the logic for classi-

fying precipitation types and applying different Z–R re-

lationships. When hourly rain gauge data are introduced

in the Q2RadGC product, RMSD reduces and CC in-

creases for all seasons. Bias remains below 10% except

for the winter season (RD 5 216.9%). Apparently,

present algorithms that use radar and rain gauge data

alone are insufficient to properly estimate cool season

precipitation in complex terrain.

c. Statistics for each RFC

The Stage IV analysis is a QPE product generated by

the 12 RFCs and is later mosaicked for the CONUS at

NCEP. These 12 RFC regions of responsibility include

theNorthwest (NW),California–Nevada (CN), Colorado

Basin (CB), Missouri Basin (MB), Arkansas–Red Basin

(AB),WestGulf (WG),NorthCentral (NC),Ohio (OH),

Lower Mississippi (LM), Northeast (NE), Middle At-

lantic (MA), and Southeast (SE). Statistical performance

of the three algorithms in each of the RFC regions (an-

nual average and broken down by season) is provided in

Tables 2 and 3. Below, we evaluate the seasonal differ-

ences for each RFC region.

Figure 6 shows underestimation being prevalent from

all three algorithms in the western RFCs (NW, CN, and

CB), especially during winter. These radar-sampling

errors are most pronounced during the cool season be-

cause of precipitation falling from shallow, stratiform

clouds. Large gradients in spatial precipitation patterns

caused by the complex terrain limit the spatial repre-

sentativeness of rain gauges, highlighting the need for

FIG. 5. Scatterplots of QPE products shown in Figs. 4a–l using the Stage IV products shown in Figs. 4m–p as reference.
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developing novel QPE data collection and precipitation

estimation strategies. The residuals with the Stage II

product reveal a seasonal pattern of negative perturba-

tions from their annual mean difference in the winter

that become positive in the summer; this is the case for

every RFC region. In the case of the NW, NE, and MA

RFC regions (Figs. 6a,d,h), the differences remain nega-

tive throughout the entire year. In the central and south-

ern plains, the differences are generally negative in winter

and becomepositive in summer.With the exception of the

westernRFCs (and perhaps theAB), this seasonal pattern

is greatly reduced with the Q2Rad product. However,

the average differences exceed 1.0mmday21 in the NC,

AB, and LM RFCs (Figs. 6c,f,k), and are consistently

positive in the OH, WG, and SE (Figs. 6g,j,l) RFCs. The

Q2RadGC product mitigates these errors, except in the

western RFC regions.

The incorporation of rain gauge data has improved

QPE in the Q2 system for regions located east of the

Rocky Mountains. It is worthwhile to further examine

the bias that has been identified with the unadjusted

Q2Rad product. Continued improvements to this radar-

only product will apply at smaller scales (5min) where

rain gauge data do not contribute as much. Applications

at this finer scale include flash flood forecasting and

evaluation of spaceborne precipitation estimates from

passive and activemicrowave sensors (see, e.g., Kirstetter

et al. 2012). The previously identified bias with Q2Rad

appears in areas of heavy climatological precipitation in

the southeast United States and does not appear to be an

outcome of radar-sampling deficiencies, such as in the

West. A distinguishing characteristic of the Q2Rad al-

gorithm is the method of identifying each pixel as being

convective, stratiform, or tropical and applying a suitable

TABLE 3. Average Diff (mmday21), CC, and NSE for each of the 12 RFC regions of responsibility, computed for each season.

Season Index QPE

West Central East

NW CN CB MB AB WG NC OH NE MA LM SE

Winter Diff Stage II 21.32 21.19 20.69 20.11 20.33 20.22 20.22 20.90 21.01 21.81 20.72 21.09

Q2Rad 21.29 21.28 20.69 0.22 0.24 0.27 0.61 0.69 0.24 0.10 0.94 0.40

Q2RadGC 21.2 20.85 20.53 20.12 20.25 0.13 20.11 20.50 20.29 20.69 0.00 0.02

CC Stage II 0.61 0.69 0.67 0.75 0.83 0.86 0.93 0.94 0.91 0.93 0.94 0.95

Q2Rad 0.60 0.66 0.62 0.72 0.86 0.88 0.89 0.93 0.90 0.92 0.94 0.95

Q2RadGC 0.71 0.75 0.71 0.67 0.84 0.90 0.88 0.92 0.91 0.93 0.96 0.97

NSE Stage II 0.95 0.69 0.62 0.17 0.38 0.35 0.16 0.42 0.48 0.55 0.65 0.67

Q2Rad 0.86 0.69 0.60 0.16 0.32 0.30 0.20 0.41 0.51 0.58 0.65 0.69

Q2RadGC 0.75 0.54 0.52 0.21 0.35 0.27 0.23 0.46 0.44 0.58 0.53 0.51

Spring Diff Stage II 21.29 20.55 20.21 20.18 0.37 0.32 0.11 20.45 20.42 20.93 0.25 20.01

Q2Rad 21.28 20.68 20.32 20.12 0.59 0.61 0.53 0.74 0.07 20.03 1.09 0.87

Q2RadGC 21.07 20.39 20.28 20.40 0.06 0.32 0.08 0.06 20.04 20.18 0.35 0.30

CC Stage II 0.60 0.66 0.57 0.80 0.87 0.85 0.92 0.93 0.93 0.86 0.91 0.91

Q2Rad 0.63 0.67 0.60 0.83 0.90 0.91 0.94 0.96 0.93 0.90 0.96 0.96

Q2RadGC 0.77 0.74 0.71 0.87 0.92 0.91 0.94 0.96 0.95 0.93 0.96 0.96

NSE Stage II 1.00 0.45 0.40 0.68 0.58 0.42 0.38 0.53 0.48 0.71 0.63 0.71

Q2Rad 0.92 0.45 0.36 0.57 0.48 0.28 0.32 0.40 0.45 0.59 0.43 0.51

Q2RadGC 0.69 0.36 0.31 0.53 0.43 0.27 0.32 0.38 0.38 0.47 0.40 0.46

Summer Diff Stage II 20.33 0.10 0.35 0.65 1.26 0.52 0.86 20.04 20.33 20.22 0.92 0.52

Q2Rad 20.30 0.12 0.35 0.52 1.05 0.60 1.40 0.54 0.34 0.32 0.98 0.89

Q2RadGC 20.21 0.12 0.30 20.06 0.52 0.37 0.50 0.19 0.28 0.24 0.55 0.65

CC Stage II 0.55 0.51 0.57 0.84 0.87 0.83 0.92 0.90 0.89 0.86 0.84 0.80

Q2Rad 0.57 0.52 0.58 0.90 0.93 0.94 0.95 0.96 0.92 0.92 0.95 0.92

Q2RadGC 0.68 0.55 0.59 0.91 0.93 0.94 0.95 0.96 0.94 0.94 0.95 0.92

NSE Stage II 0.60 0.10 0.41 0.70 0.75 0.67 0.68 0.68 0.61 0.61 0.79 0.94

Q2Rad 0.56 0.10 0.40 0.52 0.55 0.41 0.52 0.42 0.52 0.45 0.43 0.60

Q2RadGC 0.44 0.09 0.39 0.53 0.54 0.39 0.52 0.42 0.47 0.40 0.45 0.61

Fall Diff Stage II 21.28 20.58 20.19 0.17 0.31 0.20 20.06 20.09 20.95 20.98 0.30 0.01

Q2Rad 21.31 20.60 20.27 0.00 0.60 0.39 0.38 0.51 20.51 20.14 0.60 0.21

Q2RadGC 21.07 20.31 20.20 20.20 0.22 0.20 0.07 0.19 20.23 20.18 0.20 0.17

CC Stage II 0.64 0.74 0.64 0.80 0.86 0.86 0.94 0.91 0.94 0.92 0.91 0.92

Q2Rad 0.63 0.74 0.66 0.84 0.91 0.95 0.95 0.94 0.94 0.95 0.96 0.95

Q2RadGC 0.81 0.81 0.74 0.86 0.93 0.95 0.95 0.94 0.96 0.98 0.97 0.97

NSE Stage II 0.95 0.52 0.41 0.42 0.47 0.41 0.40 0.41 0.61 0.79 0.52 0.60

Q2Rad 0.93 0.52 0.38 0.32 0.39 0.25 0.35 0.33 0.60 0.61 0.35 0.43

Q2RadGC 0.69 0.38 0.32 0.33 0.32 0.23 0.35 0.33 0.45 0.38 0.32 0.35
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Z–R equation. Convective echoes are distinct from strati-

formprecipitation because of their larger updraft strengths,

while tropical precipitation suggests active warm rain

microphysical processes. While this differential Z–R

logic has been successful in removing regional biases

(i.e., overestimated rainfall from Stage II east of the

Appalachians) and seasonal bias patterns, a seemingly

stationary bias remains. Below, we introduce results

from the precipitation type classification within Q2 to

further illuminate the source of these errors.

Figure 7 shows the percentages of precipitation types

that were identified by Q2 for each season and for each

RFC region. The greatest contribution is from strati-

form rainfall with values greater than 90% for each

season and for each RFC region. This is not a surprising

result given the larger spatiotemporal scale associated

with stratiform precipitation systems compared to con-

vective storms. Convective precipitation peaks in the

summer at all RFCs and tends to have the largest rela-

tive contribution to total precipitation in the northern-

tier RFC regions (i.e., MB and NC in Figs. 7b,c). The Q2

system uses a Z–R equation for grid cells identified as

‘‘tropical’’ that results in the highest rainfall rates per

reflectivity value (Xu et al. 2008). In contrast to the

spatial and seasonal behavior of Q2 convective precip-

itation types, the contribution from tropical precipita-

tion does not conform to physical intuition. Figure 7f, 7g,

7j, and 7k all show the maximum in tropical rainfall

occurs in spring in the southern and central plains while

Fig. 7l shows amaximum occurrence in the winter months.

Rainfall from warm rain processes in these regions are

expected the most in the summer and fall months, which

is not reflected in the results. We conclude that the pre-

cipitation typing algorithm inQ2 has been overclassifying

precipitation as tropical in RFC regions in the central

and eastern RFCs, where there is comparatively good

radar sampling, and thus explains the bias revealed in the

Q2Rad product.

d. Error modeling of Q2 rainfall products

Uses of Q2 products to evaluate other remote sensing

rainfall estimates and for hydrological applications will

greatly benefit from uncertainty estimates of the QPEs.

The product suite includes a radar quality index (RQI)

product (Zhang et al. 2012) that scales from 0 to 1 de-

pending on the height of the lowest elevation angle rel-

ative to the melting layer and percent beam blockage by

terrain. An RQI value of 1 indicates unblocked sampling

FIG. 6. Average daily precipitation difference (mmday21) segregated by season for each algorithm (color indicated in the legend) for

(a)–(l) each RFC’s region of responsibility.
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in rain below the melting layer. Kirstetter et al. (2012)

used gauge-adjusted Q2Rad at 5-min resolution to ex-

amine errors from space-based rainfall estimates. They

noted better agreement between datasets following each

level of Q2 processing and recommended restricting the

most trustworthy rainfall dataset with RQI values equal

to 1. In this study, we rely on the Stage IV daily precip-

itation amounts to compute residuals for each RFC re-

gion. Figure 8 shows the quantiles of the residuals plotted

as a function of RQI. We see the greatest dependence of

the residuals on RQI exists primarily in the western and

northern regions (Figs. 8a–e,i). Increasing slopes of the

quantile curves indicates underestimation occurs as a

function of beam height. This range-dependent bias, due

to dependence on the vertical profile of reflectivity (VPR),

is most pronounced where stratiform precipitation from

shallow clouds is most common in the western and

northern-tier RFCs.We note the systematic error (bias)

approaches 0 as the RQI increases. However, positive

residuals remain, with RQI values of 1 for several of the

RFC regions, primarily in the central plains and the

South, in agreement with prior analyses.

The error quantiles have also been computed for the

Q2RadGC product in Fig. 9. First, we note the intro-

duction of the gauge correction does little to mitigate

the VPR dependence in the NW, MS, CN, and CB RFC

regions (Figs. 9a,b,e,i). Systematic biases remain be-

cause of underestimation at low RQI, which is typically

at far range from radars. The slopes of the curves for the

other regions where there are not significant terrain

blockages have becomemuch flatter compared to Fig. 8,

indicating the gauge-correction scheme largely resolved

the prior dependence on RQI. Moreover, the 50% quan-

tiles with the Q2RadGC product converge to residuals of

0 at RQI values close to 1. This indicates the systematic

bias in these RFC regions can be safely neglected while

the spread between the quantiles provides information

about the random errors. This information can now

be used to yield QPE ensembles or probabilistic QPE

values from Q2.

FIG. 7.As in Fig. 6, but for percentage of precipitation types detected by theQ2 algorithm. These types dictate which reflectivity-to-rainfall

relation is used on a cell-by-cell basis.
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4. Summary and conclusions

Quantitative precipitation estimation (QPE) products

from the next-generation National Mosaic and QPE

system (Q2) provide the highest temporal and spatial

resolution (5min–1 km) precipitation products from

ground-based observations with the largest coverage

over the CONUS. Applying such high-resolution QPE

products to hydrological applications, such as flash flood

forecasting systems, has become feasible in the hydro-

meteorological community. Moreover, it is possible to

use these products to evaluate satellite-based QPE prod-

ucts from polar-orbiting platforms (e.g., Kirstetter et al.

2012). However, Q2 has only been evaluated byWu et al.

(2012) in a comprehensive way over large spatiotem-

poral domains. In this study, we evaluated daily Q2 pre-

cipitation products at annual and seasonal time scales

over the CONUS and then for each of the National

Weather Service River Forecast Center’s (RFC) regions

of responsibility. The comparison was carried out for the

fully automated radar-only Q2Rad product, the gauge-

adjusted Q2RadGC product, and the Stage II radar-only

product using daily accumulations from December 2009

to November 2010.

We evaluated products at the 4 km–daily scale be-

cause of the trustworthiness of the Stage IV product

at this scale, which incorporates radar, rain gauges, a

model for climatological rainfall patterns due to oro-

graphic enhancement, and manual forecaster quality

control. All products evaluated use the same radar in-

puts, and several of the gauge inputs are the same as

those used in the reference. Despite this lack of inde-

pendence, we believe there is much information to be

learned from the evaluation.While the Stage IV product

is considered the best at daily/4-km scale, the finer scale

Q2Rad and Q2RadGC products are useful and appro-

priate for evaluating spaceborne products from low-

earth-orbiting satellites and have applications in flash

flood and flood forecasting.We provide explanations for

some of the error characteristics by incorporating ad-

ditional Q2 products and finally provide error models

of the Q2 products based on the radar quality index

(RQI) product. Findings from this study are summa-

rized as follows:

FIG. 8. Error model [Q22 Stage IV residuals (mm)] of the daily Q2Rad precipitation product as a function of the RQI for (a)–(l) each of

the RFC regions.
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1) In comparing the radar-only Stage II and Q2Rad

products over the entire CONUS, both have relatively

small biases (26.8% and 7.9% respectively), but

Q2Rad has a much smaller RMSD at 1.08mmday21

(compared to 4.51mmday21 with Stage II) and

greater CC at 0.73 (compared to 0.20 with Stage II).

The low CC with Stage II is due to several isolated

points that were overestimated because of ineffective

ground clutter removal. These hotspots occurredmost

frequently during the spring and fall months.

2) The three fully automated algorithms (i.e., Stage II,

Q2Rad, andQ2RadGC) are similar with their lack of

precipitation along the coastal mountain chains in

the West and their radar-centric, circular patterns of

precipitation in the Intermountain West and north-

central plains. These deficiencies were found to be a

result of inadequate low-level coverage by NEXRAD,

which results in the greatest errors with shallow,

stratiform clouds during the cool season and perhaps

inappropriate Z–R equations applied for orographic

precipitation. These problems are not readily cor-

rected using rain gauges and thus require new ap-

proaches by the research community.

3) The Q2 logic of identifying precipitation types as be-

ing convective, stratiform, or tropical at each grid point

and applying differential Z–R equations has been

successful in removing regional biases (i.e., overesti-

mated rainfall from Stage II east of the Appalachians)

and greatly diminishes seasonal bias patterns.

4) Q2Rad overestimated average daily rainfall in the

LM and NCRFC regions by 0.91 and 0.73mmday21,

respectively. Although this bias was readily cor-

rected through gauge adjustment, intermediate Q2

products were introduced in order to help explain the

overestimation problem. It was discovered that the

automatic algorithm for identifying precipitation pro-

files representative of warm rain microphysics, thus

adapting the Z–R relation to this tropical environ-

ment, had nonintuitive seasonal and spatial charac-

teristics. In particular, the identification of tropical

rain in these regions was deemed to be too high,

especially for winter and spring months.

5) Daily precipitation errors for Q2Rad and Q2RadGC

are now modeled as a function of the RQI product.

These plots revealed strong dependence of system-

atic bias in Q2Rad and Q2RadGC products on RQI

FIG. 9. As in Fig. 8, but for the Q2RadGC algorithm.
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in the western RFCs. For the remaining RFCs with

reasonable low-level radar coverage, the gauge ad-

justment yielded quantile plots that depended much

less on RQI. Moreover, the residuals approached

0 for RQI values of 1, indicating success of the gauge-

adjustment scheme.

The identification and quantification of seasonal and

spatial characteristics of errors in the Q2 system now

provide detailed information to algorithm developers

and users alike. The sampling-related deficiencies in the

Intermountain West were largely anticipated following

the work of Maddox et al. (2002). A revelation that the

overestimation problem was a result of the tropical rain

identification algorithm, which has now been corrected

for present and future algorithm versions. Nonetheless,

this points to the need for continuing, regular studies on

the evaluation of precipitation products from remote

sensing platforms. The quantification of uncertainty in

daily precipitation amounts segregated by each RFC

region will be of great use for users who can utilize the

products in an ensemble or probabilistic sense. Future

work will focus on the utilization of data from other

spaceborne platforms to address the challenging lack of

NEXRAD coverage in the vast intermountain regions

of the West. Applying the developed error models for

daily Q2Rad and Q2RadGC products downscale to

hourly and 5-min resolution is a topic worthy of re-

search. The dependence of systematic errors on RQI

should prove to be useful in this research, as the RQI

product is generated on a 5-min basis.
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